Сохранен 22
https://2ch.hk/math/res/9864.html
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна. Подробности случившегося. Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!

Математика и реальный мир

 Аноним 01/02/17 Срд 16:26:07 #1 №9864 
blog.png
Привет, математач.

Я тот анон, что создавал "хардкорная логика". Хочу затронуть еще один вопрос. Заметил такую вещь, что при работе с идеальными абстрактными структурами, логическими операциями и т.п. многие люди склонны экстраполировать это на реальный мир, а имеено начинают видеть логику и структуру абсолютно везде, видеть и верить в "неслучайные случайности", а там и до метафизики недалеко. Не хочу разводить какие-то холивары, просто мне интересно, насколько ли действительно реально такое влияние математики на человека или это скорее воспитание? Как %%и нужно ли% разграничивать математику и реальный мир для себя?

Всегда думал, что вот такие "фанатики" которые везде видят смыслы могут стать либо локомотивами математики, либо поехавшими шизофрениками.

Хз, зачем я этот тред создал, если потонет то может и ладно. Просто, кажется, за неимением полного знания желание во всем находить/видеть смыслы может привести к экстраполяции (надуманным фантазиям), что не есть хорошо. А затем такой человек может неявно пропихивать это на студентов и прочее.

Короче, кто что думает по этому поводу. Как живете с математикой в голове?
Аноним 01/02/17 Срд 16:27:37 #2 №9865 
>>9864 (OP)
будем пока говорить не про теорию вероятностей, она, конечно, вносит хороший вклад в понимание вещей, но ведь не все ей занимаются.

ОП
Аноним 01/02/17 Срд 16:31:08 #3 №9869 
>>9864 (OP)
Попробуй физику
Аноним 01/02/17 Срд 16:38:45 #4 №9873 
>>9869
так тут не в этом вопрос. Ты же не скажешь каждому математику "физику попробуй" верно.
Аноним 01/02/17 Срд 17:34:04 #5 №9890 
>>9864 (OP)
Ну как бы подмечать скрытые закономерности и придумывать скрытые закономерности - разные вещи. Ну вот, блядь, возьми писателя, например. Наверное он немного не так смотрит на мир, как неписатели, подмечает для себя какие-то ситуации, пейзажики, персонажей, диалоги, етк. Ты же не станешь его шизофреником из-за этого называть. Тут вот тоже у некоторых возможна подобная "профдеформация". Но мне кажется, что это скорее выражается в большей четкости мышления и более развитой способности к анализу, ч ем в видении каких-то "скрытых смыслов".

Но среди математиков процент шизофреников вроде выше, чем в среднем по населению, да.
Аноним 01/02/17 Срд 17:35:39 #6 №9891 
Надо добавить сразу, чтоб не провоцировать: это корреляция, а не следствие. Просто люди с шизоидным складом личности имеют больше шансов достичь успеха в точных науках. Но и шизофрения у них почаще, чем у остальной популяции.
Аноним 01/02/17 Срд 17:49:41 #7 №9897 
>>9890
не очень понял пример с "подмечанием скрытых закономерностей" у писателей. Ну да ладно.
А как ты различишь, подметил ты или придумал сам себе?
Аноним 01/02/17 Срд 19:05:22 #8 №9932 
>>9897
Ну я ж написал про пейсателей - диалоги они слушают, например, некоторые записывают даже. Про скрытые закономерности у них я не говорил. Не суть короче.

> как ты различишь
Бля, ты так ненавязчиво пытаешься начать дискуссию про научный метод и познаваемость мира?
Аноним 02/02/17 Чтв 13:37:55 #9 №10033 
>>9864 (OP)
Математика изначально задумывалась, чтобы описывать окружающий мир.
Аноним 02/02/17 Чтв 13:52:50 #10 №10035 
>>9864 (OP)
Провалился под лёд я без лыж в первые дни мая, переходя по льду входящее теперь в черту Москвы стометровое озеро «Миру — мир». Началось с того, что лёд подо мной стал слегка прогибаться, и под кедами показалась вода. Вскоре я понял, что форма льда — гауссовская колоколообразная (перевёрнутая) кривая. Ещё через минуту стало ясно, что я наблюдаю фундаментальное решение уравнения теплопроводности (в обратном времени). И, действительно, слегка не дойдя до дельта-функции, лёд провалился, и я оказался в проруби диаметром в полметра, метрах в тридцати от берега.
Аноним 02/02/17 Чтв 14:05:57 #11 №10041 
Предлагаю немного поизучать то как работает мозг и всё встанет на свои места. а именно - это чисто базовая штука. Находить вокруг то что заранее усвоено. Никто не найдёт то чего никогда ранее не было. Так устроен мозг. Он не создаёт ничего нового. Ищет лишь элементы старого.
Аноним 02/02/17 Чтв 18:56:49 #12 №10104 
>>10035
Физик, плес.
Аноним 03/02/17 Птн 11:20:24 #13 №10199 
>>10041
не, ну это понятно.
но ведь можно это осознавать не?
такие вещи как минимум.
Аноним 03/02/17 Птн 12:34:58 #14 №10205 
>>9864 (OP)
Повтори свой вопрос еще раз другими словами.
Я не понял что ты хочешь от борды римманов и лобачевских.
Аноним 03/02/17 Птн 12:51:54 #15 №10208 
>>9864 (OP)
Ну, по ходу куда ни глянь одна математика. Если согласится, что времени раньше не было, то можно представить время как топологический объект, а все что мы видим вокруг - его актуальное изменение, деревья, люди и т.д. суть воплощенная математическая формула, этого топологического пространства.
Аноним 19/02/17 Вск 00:23:00 #16 №11426 
тест
Аноним 19/02/17 Вск 00:29:46 #17 №11427 
123.webm
Аноним 19/02/17 Вск 10:26:51 #18 №11434 
Почему на мат доске обсуждается все что угодно, кроме математики?
sage[mailto:sage] Аноним 19/02/17 Вск 10:27:07 #19 №11435 
>>11434
сажу забыл
Аноним 19/02/17 Вск 13:13:07 #20 №11439 
>>11434
Математику сложно обсуждать. Непонятна теорема - прочитай и подумай. Непонятно определение - прочитай и подумай. Не решается задачка - посиди и подумай. Обсуждать тут, собственно, и нечего больше. Разве что названиями книг и ссылками на статьи обмениваться.
Аноним 20/02/17 Пнд 19:11:42 #21 №11574 
>>11439
Вся сложность закодирована в слове "подумай", разворачивая его, можно получать какие-то дискуссии.
Аноним 20/02/17 Пнд 20:28:22 #22 №11580 
>>9864 (OP)
>Хочу затронуть еще один вопрос. Заметил такую вещь, что при работе с идеальными абстрактными структурами, логическими операциями и т.п. многие люди склонны экстраполировать это на реальный мир, а имеено начинают видеть логику и структуру абсолютно везде, видеть и верить в "неслучайные случайности", а там и до метафизики недалеко.
Есть такая замечательная вещь как теория хаоса. Советую ознакомиться.
comments powered by Disqus

Отзывы и предложения